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1 Introduction

The LPJ GUESS model is a model developed
by several institutes, one of which Lund Uni-
versity. It predicts biomes based on climate
variables. In this project, an attempt is made
to predict biomes and vegetation parameters
using climate variables such as precipitation,
temperature and soil data. The modelling ap-
proach is random forest machine learning. Sev-
eral types of models are produced; binary and
multi-class classification of biomes and regres-
sion models for predicting the vegetation car-
bon pool (VegC) , which indicates how much
carbon is stored in biomass, and Net primary
productivity (NPP), which is how much carbon
the biomass gains in a period of one year. The
approach is explained, results are organised in
sections according to the model type. Feature
analysis and performance measures are done to
see how the models generalise to unseen data.

2 Machine learning and ran-

dom forest models

The goal of machine learning, in essence, is
to build models using existing data (known as
training data) which have predictive capabili-
ties on new data. The data is typically com-
prised of a collection of observations of several
values. In the context of climate modelling,
such data could for example be the mean pre-
cipitation or temperature at a specific location.
More formally, let Xtrn be an m × n matrix.
We then speak of n features and m observa-
tions. Besides the training data, there must
also be a desired result which is somehow cor-
related to the features. This is typically known
as the target and is a m× l matrix y, where l is
the number of outputs. The machine learning
model then, is mathematical function which
takes in an observation mi and produces an
output ŷ which is an estimate of y. In the most
general sense, ’training’ means optimising the
function such that ||y − ŷ|| is minimised. The
choice of algorithm to find this ideal function

Figure 1: An example of a binary decision tree classi-
fier, to determine whether it will rain or not based on
three different weather variables.

depends largely on the type of problem and the
nature of the target y. An algorithm can be
one of two types: regressive models are suited
to continuous target variables; for distinct pre-
diction categories (e.g. cats and dogs), a clas-
sification algorithm is more appropriate.

How exactly the algorithm optimises for the
solution is a matter of design, and depends to
some extent on the available data and the na-
ture of the patterns within that data. Random
Forest models offer a good balance between
predictive power and interpretability, and are
the choice of model in this project. A random
forest consists of decision trees. One decision
tree is a series of comparisons of the input val-
ues and a target variable. An example is shown
in Figure 1. The idea behind creating a forest
of trees is that many different sequences of de-
cisions will be generated in order to classify
or predict the output. Then, by a system of
majority voting of the trees, the class or value
that is the outcome of the majority of trees is
chosen as the predicted value of a random for-
est. The advantage of this is that overfitting
could be reduced, as ‘deep’ trees (that is, trees
with many decisions), can potentially be biased
and have poor generalisation to unseen data by
themselves.
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Model Xtrn Xtst

Binary classifier Germany Benelux1

Multi-class classifier Canada Nordics2

Regression models Americas Australia

Table 1: 1 Belgium, Netherlands, Luxembourg. 2 Den-
mark, Sweden, Norway, Finland.

3 Methodology

3.1 Training and testing data

A total of four models are implemented; two
classifiers and two regressive models. The clas-
sifiers are a binary and multi-class classifier for
biomes. The regressive models are to predict
NPP and VegC values. The first step for each
of these models is deciding on a satisfactory
training set Xtrn and testing data set Xtst.
Some general good practices/rules are:

� The more training data the better (many
observations mtrn),

� ideally one has mtrn ≫ mtst, and

� a model can only predict what it has seen;
test data must reflect the training data.
For example, if a model is trained to clas-
sify tundra and ice, it will never classify
a test data set containing tropical rain-
forest and steppe.

With this in mind, the data sets of choice are
presented in Table 1.

3.2 Resampling using SMOTE

One common problem is the imbalance of classes.
In short, a machine learning algorithm may
show a bias towards over-represented classes,
and thus overestimate the presence of these
classes in unseen data. Likewise, under-represented
classes may be predicted less (or not at all) in
test data. One common way of dealing with
this is resampling of data. One such method
is the Synthetic Minority Oversampling TEch-
nique (SMOTE). The idea is to generate new
synthetic data using k-nearest neighbours. This

Figure 2: Worldwide distribution of biomes as pre-
dicted by the LPJ GUESS model.

Figure 3: The two targets used for training and testing
the binary classifier. The training data shown here is
before resampling.

should in theory improve the performance of
our algorithm.

4 Results

4.1 Binary classifier

The goal of the binary classifier was to pre-
dict the biomes labelled Biome obs in the LPJ
GUESS dataset. The two classes in the model
are the temperate/boreal mixed forest and the
temperate deciduous forest. the target and test
sets y are plotted in Figure 3. Before resam-
pling, an accuracy of 82.8% was achieved, which
increased to 85.7% after upsampling the tem-
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Class Precision Recall
Temp./Boreal Mix 0.3750 0.6000
Temp. Deciduous 0.9259 0.8333

Table 2: Performance measures for the two different
classes.

Figure 4: Confusion matrix for the binary classifier pre-
dicting on the test data. The model was trained on
resampled training data.

perate/boreal mixed forest using SMOTE. Other
performance measures for the model using re-
sampled data are displayed in Table 2 and Fig-
ure 4. Finally, feature importance analysis was
performed on the model, with the result being
displayed in Figure 5.

4.2 Multi-class classifier

Climate data for Canada and the Nordics were
used for the training and testing respectively.
A display of the biome distribution can be found
in Appendix A. For this model, two different
targets were used for training. Initially, Biome obs

(the observed biomes) were used. As per the
project tasks, the model was then retrained us-
ing grid search cross-validation. The resulting
confusion matrices are displayed in Figure 6
and 7. The weighted average f1 score for both
models was about 0.68 and 0.65 respectively,
which is unexpected, as a grid search should in
theory increase the performance of the model.
The full classification reports are appended in

Figure 5: The ten most important features for the
binary classification. Temperature and precipitation
seem to dominate in this model.

Appendix B.

Figure 6: Multiclass confusion matrix without tuning.

Then, the model was retrained using Biome Cmax

instead, which is the biome prediction of LPJ
GUESS based on the maximum biomass. Here,
the weighted average of f1-scores is 0.52, slightly
worse than the models trained on Biome obs.
However, because of the reduced complexity,
we see more correct predictions for temperate
deciduous forests, while the new biome class of
‘moist savanna’ has rather poor prediction.
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Figure 7: Multi-class confusion matrix with grid search
cross-validation.

4.3 VegC & NPP Regression mod-
els

Finally, regression models for two continuous
variables were implemented. To measure per-
formance, the absolute difference between the
model prediction and the LPJ GUESS predic-
tion is plotted in Figure 11 and 12. The root-
mean square error (RMSE) was 0.1213 kg C
m−2 year−1 for NPP and 2.8879 kg C m−2 for
VegC respectively. To make them more compa-
rable, one can normalise the RMSE by taking
RMSE/(max(x)−min(x)) where x is the target
data for NPP and VegC. This gives NRMSENPP

≈ 0.108 and NRMSEV egC ≈ 0.131.

As before, feature importance graphs were gen-
erated and are in Figure 13 and 14.

5 Discussion

Binary classifier

The binary classifier was a good first attempt
at making a random forest classifier, and with
SMOTE resampling, the predictions are some-
what good at 86%. The most common mis-
classification was temperate deciduous forest
as temperate/boreal mixed forest. In hind-

Figure 8: Multi-class confusion matrix for the model
trained on Biome Cmax.

Figure 9: Feature importance plot for the multi-class
classifier trained with Biome obs as a target.

sight, these two biomes are perhaps too sim-
ilar, and after discussion we conclude that the
climate indicators may not be enough to sep-
arate these two biomes well. It could also be
that resampling the data did not have as much
of an effect as is desired, however, it was effec-
tive in the sense that the recall for the mixed
forest class went from 0 (not a single predic-
tion)to 0.6, meaning the class was finally pre-
dicted sometimes by the model. When it comes
to feature importance, we find that the maxi-
mum temperature in the winter, as well as the
temperature and precipitation in the fall are
the most important features. However, there is
not any features which are decisively more im-
portant than any other, which is a supportive
argument for the statement earlier; that these
two biomes may not be easily separable based
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Figure 10: Feature importance plot for the multi-class
classifier trained with Biome Cmax as a target.

Figure 11: Absolute prediction error of the VegC vari-
able for the test data..

on the climate data.

Multi-class classifier

The models both before and after grid search
cross validation do not perform particularly well.
There are especially many misclassifications for
under-represented classes. The worst cases of
misclassification before tuning the model were
arctic/alpine tundra being classified as boreal
ever forest, and temperate/boreal mixed forest
being misclassified as boreal ever forest. Over-
all, there seems to be a strong bias towards
this class, which was expected because this is
the dominating class in our model. After re-
tuning, the misclassifications of alpine tundra
as boreal ever forest reduce significantly. How-
ever, we find worse precision in alpine tundra
and temperate deciduous forest. Overall, this

Figure 12: Absolute prediction error of the NPP variable
for the test data.

Figure 13: Feature importance for the NPP model.

leads to a lower f1 score of 0.65. This was some-
what unexpected, as finding a model through
grid-search cross validation should in theory in-
crease the performance.

Finally, training the model with Biome Cmax as
a target, there is much worse performance, al-
though there is some better precision for some
classes. This may just be due to the simplified
model, having less biomes. This however does
not explain why the performance is bad.

For both models, one of the most common mis-
classification is temperate/boreal mixed forest
as boreal evergreen forest. Like with the bi-
nary classifier model, this may be due to the
climate variables not being enough to separate
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Figure 14: Feature importance for the VegC model.

these classes. When it comes to features, there
is once again no clear distinguishing features in
both models, but a large spread of features all
having a similar impact.

Regression models

The regression models, unlike the classifier mod-
els, seem to have clear features that are con-
sidered important. Firstly, the mean precipi-
tation in winter is an important prediction for
both the NPP and VegC models. This is ex-
pected; the available biomass and hence NPP
will strongly correlate to the amount of water
available. In both training and testing data
sets, there are regions with more and less pre-
cipitation, so this variable forms a clear sepa-
rator. Precipitation in the summer is the sec-
ond most important feature. Both the NPP
and VegC model have larger errors in predic-
tions in coastal areas. In the north-east of
Queensland, near Cairns, we see a particular
hotspot of error in both models. Upon further
research, we determined that ocean currents
may play a role in the wrong prediction here,
as this may not be fully reflected in the climate
data measured on land. After normalising the
RMSE, we find that the NPP model is per-
forming slightly better than the VegC model on
average, despite some hotspots with very poor
prediction in both the coastal areas as well as
desert areas. Perhaps the combination of train-
ing and testing data was not appropriate here;
the Americas (training data) have relatively lit-

tle desert and a lot of rainforest, whereas Aus-
tralia (test data) has a lot of desert. In future
work, perhaps the entire world (sans Australia)
could be used for training in order to improve
the regression models.

6 Conclusion

This project has shown that machine learning
as a method of modelling has several aspects.
While the technological aspect are well taken
care of by extensive libraries, the real chal-
lenge is in having enough, and relevant, train-
ing data. On top of that, testing data needs
to reflect what was trained on. This is the pri-
mary factor to a model’s performance, and this
is likely where our models could be improved in
the future; by more careful selection of training
data. The feature importance ambiguity for
most models seems to also imply that data se-
lection was not optimal. Hyperparameter tun-
ing and techniques like resampling and cross-
validation are in theory ways to improve the
performance of models, but these techniques
had mixed results in our case. Overall, machine
learning can be an effective method, especially
when it is explainable and interpretable. With
more time, a re-evaluation of the training/test
data selection and an assessment of the spe-
cific input features could be done to get better
results.
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A Other figures

Figure 15: Biome distribution according to observa-
tions for Canada, used as the training target for the
multi-class algorithm trained on Biome obs.

Figure 16: Biome distribution according to observa-
tions for the Nordics, used as the test target for the
multi-class algorithm trained on Biome obs.
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B Multiclass classification reports

precision recall f1-score support
Boreal ever forest 0.781575 0.913194 0.842274 576
Temp/boreal mix fo. 0.757576 0.146199 0.245098 171
Temp decid forest 0.584416 0.600000 0.592105 75
Desert 1.000000 0.000000 0.000000 8
Arctic/alpine tundra 0.373626 0.772727 0.503704 44
accuracy 0.720824
macro avg 0.699439 0.486424 0.436636 874
weighted avg 0.741423 0.720824 0.679213 874

Table 3: Classification report for the multiclass model trained on Biome obs, before tuning of the model using cross-
validation.

precision recall f1-score support
Boreal ever forest 0.766412 0.871528 0.815597 576
Temp/boreal mix fo. 0.591837 0.169591 0.263636 171
Temp decid forest 0.596154 0.413333 0.488189 75
Desert 1.000000 0.000000 0.000000 8
Arctic/alpine tundra 0.305085 0.818182 0.444444 44
accuracy 0.684211
macro avg 0.651898 0.454527 0.402373 874
weighted avg 0.696559 0.684211 0.653359 874

Table 4: Classification report for the multiclass model trained on Biome Obs, AFTER tuning of the model using
cross-validation.
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