64 lines
2.4 KiB
Python
64 lines
2.4 KiB
Python
import pandas as pd
|
|
import yaml
|
|
|
|
class State:
|
|
"""
|
|
Object to describe a unique quantum state using the nucleon count A, proton number Z and the excitation energy E.
|
|
|
|
Arguments:
|
|
A Nucleon count of the isotope
|
|
Z Proton number of the isotope
|
|
excitation_energy The energy level occupied, relative to the ground state E=0
|
|
|
|
Attributes:
|
|
id The unique identifier of the state
|
|
A Nucleon count of the isotope
|
|
Z Proton number of the isotope
|
|
E Excitation energy relative to ground state
|
|
half_life The half-life of the isotope
|
|
branches DataFrame object containing the available decay branches for this state
|
|
"""
|
|
|
|
# Initialize state database as class-level attribute
|
|
with open('state_db.yml', 'r') as file:
|
|
DATABASE = yaml.safe_load(file)
|
|
|
|
def __init__(self, A, Z, excitation_energy=0):
|
|
state_id, db_state = self.find_state(A, Z, excitation_energy) # Find the state in the existing database
|
|
|
|
if db_state == None:
|
|
raise KeyError("State not found in database.")
|
|
|
|
else:
|
|
self.id = state_id
|
|
self.A = A
|
|
self.Z = Z
|
|
self.E = excitation_energy
|
|
self.half_life = db_state['half_life']
|
|
self.name = db_state['name']
|
|
|
|
if self.half_life == None: # if there is no half life, we have a "stable" state and don't need branches
|
|
self.branches = None
|
|
|
|
else:
|
|
self.branches = self.unpack_branches(db_state)
|
|
|
|
def get_all_states(self):
|
|
return list(self.DATABASE.keys())
|
|
|
|
def get_true_half_lives(self):
|
|
return [self.DATABASE[x]['half_life'] for x in self.DATABASE.keys()]
|
|
|
|
def find_state(self, A, Z, excitation_energy):
|
|
try:
|
|
state_id = f'{A}.{Z}.{excitation_energy}'
|
|
return state_id, self.DATABASE[f'{A}.{Z}.{excitation_energy}']
|
|
except KeyError:
|
|
return None, None
|
|
|
|
def unpack_branches(self, db_state):
|
|
"""Takes a state from YML database and unpacks into a Pandas DataFrame"""
|
|
|
|
cols = ['probability', 'energy [keV]', 'excitation energy [keV]']
|
|
df = pd.DataFrame.from_dict(db_state['branches'], orient='index', columns=cols)
|
|
return df |