Initial commit

This commit is contained in:
Pim Nelissen
2024-06-30 11:26:36 +02:00
parent 14fb55cb5e
commit e42049c981
9 changed files with 534 additions and 0 deletions

View File

@ -0,0 +1,220 @@
import numpy as np
import pandas as pd
from tqdm import tqdm
from _utils.termcolors import termcolors as tc
from _simulations.state import State
from _simulations.distributions import Distribution
from _simulations.event import Event
from _stats.schmidt_test import schmidt_test, generalised_schmidt_test as gst
class Chain:
"""
Chain class generates a 1D array of State objects, with randomly chosen paths based on the probabilities given by available branches.
Arguments:
initial_state The initial state from which to start the chain
Attributes:
chain The simulated chain of decays
"""
def __init__(self, initial_state):
chain_data, decay_energies = self.generate_random_chain(initial_state)
self.chain = [x[0] for x in chain_data]
self.decay_energies = decay_energies
state_id = lambda x: x.id if isinstance(x, State) else ''
chain_string = [state_id(x[0]) + f' ==({x[1]})==> ' for x in chain_data]
self.id = "".join(chain_string)
def generate_random_chain(self, initial_state):
"""Generate a random decay path according to branching probabilities."""
chain = [initial_state]
decay_energies = []
state = initial_state
while not state.half_life == None: # run until a "stable" (half_life == None) state is found or SF is encountered
# Randomly sample a decay branch based on the relative probabilities of each decay
b = np.random.choice(state.branches.index.values, p=state.branches['probability'])
chain[-1] = [chain[-1], b]
if 'sf' in str(b):
decay_energies.append(None)
break
else:
excitation_energy = int(state.branches.loc[b]['excitation energy [keV]']) # fixing weird thingy where pandas turns int into float
decay_energy = int(state.branches.loc[b]['energy [keV]']) # fixing weird thingy where pandas turns int into float
decay_energies.append(decay_energy)
if 'alpha' in str(b): # if alpha decay, find state A-4, Z-2 with corresponding excitation energy
state = State(state.A-4, state.Z-2, excitation_energy)
elif 'gamma' in str(b):
state = State(state.A, state.Z, excitation_energy)
chain.append(state)
return chain, decay_energies
class ChainSimulation:
"""
ChainSimulation simulates N number of decays from a given initial state. Simulations are done using Monte Carlo techniques.
For each iteration, a new random path is determined based on branching ratios defined by the Chain object. From this,
a cumulative distribution function (CDF) for each step is generated, and a random event time is generated, simulating
a random radioactive decay that follows the original exponential distribution of any given state. The result is saved
into a pandas DataFrame for further use.
Arguments:
initial_state The initial state from which to simulate decay chains
Attributes:
run_simulation() Function to start the simulation.
int N (default 1000) - The number of decay chains to simulate
results 2D array of the results
results_df The same results but formatted to a DataFrame
"""
def __init__(self, initial_state):
self.initial_state = initial_state
self.all_states = initial_state.get_all_states()
self.true_half_lives = initial_state.get_true_half_lives()
self.result = None
self.result_dfs = None
def run_simulation(self, N=10_000, dist_time_range_factor=5):
"""
Starts the Monte Carlo simulations and updates result attributes.
Keyword arguments:
int N (default 10_000) The number of decay chains to simulate
"""
chain_simulations = {}
temp_dist_dict = {} # temporary dictionary to store CDF and half life, in order to avoid recalculations in the simulation for loop.
for n in tqdm(range(N)):
chain_obj = Chain(self.initial_state)
chain = chain_obj.chain
chain_id = chain_obj.id
event_times = [] # initialise empty list for generated event times
for i in range(len(chain[:-1])):
step = chain[i]
last_step = chain[i-1]
if step.half_life in temp_dist_dict.keys():
dist = temp_dist_dict[step.half_life] # If dist was already generated, load it from temporary dict
else:
print(f'CDF for t₁/₂ = {step.half_life}s not found in temporary dictionary. Generating a new one...')
dist = Distribution(step.half_life, dist_time_range_factor*step.half_life) # generate new distribution for given half-life
temp_dist_dict[step.half_life] = dist # add newly generated distribution to dict
event = Event(dist, parent=last_step, daughter=step)
event_times.append(event.event_time)
if chain_id in chain_simulations.keys():
chain_simulations[chain_id].append(event_times)
else:
chain_simulations[chain_id] = [event_times]
event_times.append('SF')
result_dfs = {}
for chain_sim in chain_simulations:
col_names = chain_sim.split()
col_names = [x for x in col_names if not '=' in x] # get column names for all decays (not including the final "stable" state)
df = pd.DataFrame(chain_simulations[chain_sim], columns=col_names)
result_dfs[chain_sim] = df
self.result = chain_simulations
self.result_dfs = result_dfs
lifetimes = {}
for (chain_id, df) in self.result_dfs.items():
for column in df.columns[:-1]:
try:
lifetimes[column] += df[column].to_numpy()
except:
lifetimes[column] = df[column].to_numpy()
mean_lifetimes = {k:np.mean(v) for (k, v) in lifetimes.items()}
self.mean_lifetimes = pd.DataFrame(data={
'Mean Lifetime [s]': mean_lifetimes.values(),
'"True" Half-life [s]': self.true_half_lives[:-1]}, index=mean_lifetimes.keys())
# getters
def get_mean_lifetime(self, A, Z, E=0):
"""Returns a specific mean lifetime"""
try:
ret = self.mean_lifetimes.loc[f'{A}.{Z}.{E}']['Mean Lifetime [s]']
return ret
except:
raise KeyError("State not found!")
# printing functions
def print_results(self):
for i, k in enumerate(self.result_dfs.keys()):
print(tc.BOLD+ f"Branch {i+1}: " + '\n' + tc.OKBLUE + k + tc.ENDC, '\n')
print(self.result_dfs[k], '\n')
def print_mean_lifetimes(self):
print(tc.OKBLUE + tc.BOLD + "Mean Lifetime of states" + tc.ENDC)
print(self.mean_lifetimes, '\n')
def print_schmidt_test(self):
for state in self.all_states[:-1]:
print(tc.BOLD + tc.OKBLUE + f"Schmidt Test for {state}" + tc.ENDC)
ls = []
for df in self.result_dfs.values():
try: lifetimes = df[state].to_list()
except: lifetimes = []
if lifetimes.__contains__('SF'):
pass
else:
ls.append(lifetimes)
arr = np.concatenate(ls)
sigma_theta_exp, conf_int = schmidt_test(arr)
lo = conf_int[0]
hi = conf_int[1]
if lo <= sigma_theta_exp <= hi:
color = tc.OKGREEN
else:
color = tc.FAIL
print('σ_θ: ' + color + str(round(sigma_theta_exp, 3)) + tc.ENDC,
f'[{round(lo, 3)}, {round(hi, 3)}]',
f'({arr.shape[0]} lifetimes)')
print()
def generalised_schmidt_test(self):
print(tc.BOLD + tc.OKBLUE + "Generalised Schmidt Test" + tc.ENDC)
for key in self.result_dfs.keys():
df = self.result_dfs[key]
print(key)
sigma_theta_exp, conf_int = gst(df)
lo = conf_int[0]
hi = conf_int[1]
if lo <= sigma_theta_exp <= hi:
color = tc.OKGREEN
else:
color = tc.FAIL
print('σ_θ: ' + color + str(round(sigma_theta_exp, 3)) + tc.ENDC,
f'[{round(lo, 3)}, {round(hi, 3)}]',
f'({df.shape[0]} chains)')
print()