30 Commits

Author SHA1 Message Date
aa76900bd4 Update and rename ci.yml to ci-docs.yml 2026-01-28 09:48:33 +01:00
cd0568aa8b add mkdocstrings-python to ci.yml 2026-01-28 09:43:17 +01:00
287c6befdd Merge pull request #1 from pim-n/dev
Dev
2026-01-28 09:40:57 +01:00
9302af4624 Add mkdocs backbone and minimal content 2026-01-28 09:39:55 +01:00
56caeb9e3a add CI for mkdocs 2026-01-28 09:38:04 +01:00
47197e5e11 refactor to change Source to PointSource 2026-01-28 09:16:26 +01:00
b2120fa991 rename Source to PointSource and move to sources.py 2026-01-28 09:14:55 +01:00
ffb7aa0541 rename piecewise_regression_on_path to simplify_path 2026-01-28 08:59:05 +01:00
d162f9fee3 improve docstrings for future comptability with mkdocs 2026-01-28 08:43:07 +01:00
f9ff50f4ef Clean up all docstrings. 2026-01-27 21:17:02 +01:00
470bf79b69 Add air density. Add docstring for Landscape 2026-01-27 21:12:04 +01:00
5a7c2338f3 rename units to scale for the size of the world 2026-01-27 21:09:13 +01:00
7a03251c6f rename isotopes.py to isotope.py and update the references 2026-01-27 20:49:35 +01:00
4d7fb541c3 fix notebook 2026-01-27 20:42:21 +01:00
e53fd65088 update demo notebook 2026-01-27 20:40:50 +01:00
ae0187e0f6 update Source representation 2026-01-27 20:39:52 +01:00
3b92abc426 fix docstring 2026-01-27 20:30:27 +01:00
8de5fe3351 Update Source object to work with Isotope 2026-01-27 20:23:54 +01:00
6fe6fe744f Add Isotope object 2026-01-27 20:23:33 +01:00
af31770c6f re-render notebook 2026-01-27 19:46:49 +01:00
8d8826a649 add representation for Source object 2026-01-27 19:46:03 +01:00
c6c92e8f0d add tests for distance between objects 2026-01-27 19:38:18 +01:00
0c30678427 Add blank Landscape to which to add Sources and Path 2026-01-27 19:22:43 +01:00
6187a38783 Update README 2026-01-27 15:51:26 +01:00
07c3fc18a9 Restrict python version to exclude 3.13 2026-01-27 15:50:32 +01:00
623f610c8f update README 2026-01-27 15:37:07 +01:00
0d37238794 Add test for path simplification accuracy. 2026-01-27 15:27:35 +01:00
8ac244ec3b Add demo notebook 2026-01-27 15:21:06 +01:00
b4ed2963d2 Add pyproject.toml and requirements.txt 2026-01-27 15:20:05 +01:00
bb2f81fc20 Add path generation functionality. 2026-01-27 15:18:21 +01:00
29 changed files with 1149 additions and 1 deletions

30
.github/workflows/ci-docs.yml vendored Normal file
View File

@ -0,0 +1,30 @@
name: ci-docs
on:
push:
branches:
- master
- main
permissions:
contents: write
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Configure Git Credentials
run: |
git config user.name github-actions[bot]
git config user.email 41898282+github-actions[bot]@users.noreply.github.com
- uses: actions/setup-python@v5
with:
python-version: 3.x
- run: echo "cache_id=$(date --utc '+%V')" >> $GITHUB_ENV
- uses: actions/cache@v4
with:
key: mkdocs-material-${{ env.cache_id }}
path: .cache
restore-keys: |
mkdocs-material-
- run: pip install -e .
- run: pip install mkdocs-material mkdocstrings-python
- run: mkdocs gh-deploy --force

View File

@ -1,2 +1,35 @@
# pg-rad # pg-rad
Primary Gamma RADiation landscape Primary Gamma RADiation landscape - Development
## Clone
```
git clone https://github.com/pim-n/pg-rad
cd pg-rad
git checkout dev
```
or
```
git@github.com:pim-n/pg-rad.git
cd pg-rad
git checkout dev
```
## Dependencies / venv
With Python verion `>=3.12.4` and `<3.13`, create a virtual environment and install pg-rad.
```
python3 -m venv .venv
source .venv/bin/activate
(venv) pip install -e .[dev]
```
## Tests
Tests can be run with `pytest` from the root directory of the repository.
```
(venv) pytest
```

253
demo/demo.ipynb Normal file

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,4 @@
---
title: pg_rad.landscape.create_landscape_from_path
---
::: pg_rad.landscape.create_landscape_from_path

View File

@ -0,0 +1,4 @@
---
title: pg_rad.landscape.Landscape
---
::: pg_rad.landscape.Landscape

View File

@ -0,0 +1,5 @@
---
title: pg_rad.objects.Object
---
::: pg_rad.objects.Object

4
docs/API/path/path.md Normal file
View File

@ -0,0 +1,4 @@
---
title: pg_rad.path.Path
---
::: pg_rad.path.Path

View File

@ -0,0 +1,5 @@
---
title: pg_rad.path.path_from_RT90
---
::: pg_rad.path.path_from_RT90

View File

@ -0,0 +1,4 @@
---
title: pg_rad.path.simplify_path
---
::: pg_rad.path.simplify_path

View File

@ -0,0 +1,5 @@
---
title: pg_rad.sources.PointSource
---
::: pg_rad.sources.PointSource

45
docs/index.md Normal file
View File

@ -0,0 +1,45 @@
# Welcome!
Primary Gamma RADiation Landscapes (PG-RAD) is a Python package for research in source localization. It can simulate mobile gamma spectrometry data acquired from vehicle-borne detectors along a predefined path (e.g. a road).
## Requirements
PG-RAD requires Python `3.12`. The guides below assume a unix-like system.
## Installation (CLI)
<!--pipx seems like a possible option to install python package in a contained environment on unix-->
Lorem ipsum
## Installation (Python module)
If you are interested in using PG-RAD in another Python project, create a virtual environment first:
```
python3 -m venv .venv
```
Then install PG-RAD in it:
```
source .venv/bin/activate
(.venv) pip install git+https://github.com/pim-n/pg-rad
```
See how to get started with PG-RAD with your own Python code [here](pg-rad-in-python).
## For developers
```
git clone https://github.com/pim-n/pg-rad
cd pg-rad
git checkout dev
```
or
```
git@github.com:pim-n/pg-rad.git
cd pg-rad
git checkout dev
```

4
docs/pg-rad-in-cli.md Normal file
View File

@ -0,0 +1,4 @@
---
title: Using PG-RAD in CLI
---
Lorem ipsum.

5
docs/pg-rad-in-python.md Normal file
View File

@ -0,0 +1,5 @@
---
title: Using PG-RAD as a module
---
Consult the API documentation in the side bar.

41
mkdocs.yml Normal file
View File

@ -0,0 +1,41 @@
site_name: PG-RAD Documentation
theme:
name: material
palette:
# Dark Mode
- scheme: slate
toggle:
icon: material/weather-sunny
name: Dark mode
primary: blue
accent: deep purple
# Light Mode
- scheme: default
toggle:
icon: material/weather-night
name: Light mode
primary: light blue
accent: blue
features:
- content.code.copy
markdown_extensions:
- pymdownx.highlight:
anchor_linenums: true
line_spans: __span
pygments_lang_class: true
- pymdownx.inlinehilite
- pymdownx.snippets
- pymdownx.superfences
plugins:
- mkdocstrings:
enabled: !ENV [ENABLE_MKDOCSTRINGS, true]
default_handler: python
locale: en
handlers:
python:
options:
show_source: false
show_root_heading: false

32
pyproject.toml Normal file
View File

@ -0,0 +1,32 @@
[build-system]
requires = ["setuptools>=64.0", "wheel"]
build-backend = "setuptools.build_meta"
[tool.setuptools.packages.find]
where = ["src"]
[project]
name = "pg-rad"
version = "0.2.0"
authors = [
{ name="Pim Nelissen", email="pi0274ne-s@student.lu.se" },
]
description = "Primary Gamma RADiation Landscape"
readme = "README.md"
requires-python = ">=3.12.4,<3.13"
dependencies = [
"matplotlib>=3.9.2",
"numpy>=2",
"pandas>=2.3.1",
"piecewise_regression==1.5.0",
"pyyaml>=6.0.2"
]
license = "MIT"
license-files = ["LICEN[CS]E*"]
[project.urls]
Homepage = "https://github.com/pim-n/pg-rad"
Issues = "https://github.com/pim-n/pg-rad/issues"
[project.optional-dependencies]
dev = ["pytest", "notebook", "mkdocs-material", "mkdocstrings-python"]

6
requirements.txt Normal file
View File

@ -0,0 +1,6 @@
matplotlib>=3.9.2
notebook>=7.2.1
numpy>=2
pandas>=2.3.1
piecewise_regression==1.5.0
pyyaml>=6.0.2

0
src/pg_rad/__init__.py Normal file
View File

View File

@ -0,0 +1,15 @@
version: 1
disable_existing_loggers: false
formatters:
simple:
format: '%(asctime)s - %(levelname)s: %(message)s'
handlers:
stdout:
class: logging.StreamHandler
formatter: simple
stream: ext://sys.stdout
loggers:
root:
level: INFO
handlers:
- stdout

26
src/pg_rad/dataloader.py Normal file
View File

@ -0,0 +1,26 @@
import pandas as pd
from pg_rad.logger import setup_logger
from pg_rad.exceptions import DataLoadError, InvalidCSVError
logger = setup_logger(__name__)
def load_data(filename: str) -> pd.DataFrame:
logger.debug(f"Attempting to load data from {filename}")
try:
df = pd.read_csv(filename, delimiter=',')
except FileNotFoundError as e:
logger.error(f"File not found: {filename}")
raise DataLoadError(f"File does not exist: {filename}") from e
except pd.errors.ParserError as e:
logger.error(f"Invalid CSV format: {filename}")
raise InvalidCSVError(f"Invalid CSV file: {filename}") from e
except Exception as e:
logger.exception(f"Unexpected error while loading {filename}")
raise DataLoadError("Unexpected error while loading data") from e
return df

8
src/pg_rad/exceptions.py Normal file
View File

@ -0,0 +1,8 @@
class ConvergenceError(Exception):
"""Raised when an algorithm fails to converge."""
class DataLoadError(Exception):
"""Base class for data loading errors."""
class InvalidCSVError(DataLoadError):
"""Raised when a file is not a valid CSV."""

23
src/pg_rad/isotope.py Normal file
View File

@ -0,0 +1,23 @@
class Isotope:
"""Represents the essential information of an isotope.
Args:
name (str): Full name (e.g. Caesium-137).
E (float): Energy of the primary gamma in keV.
b (float): Branching ratio for the gamma at energy E.
"""
def __init__(
self,
name: str,
E: float,
b: float
):
if E <= 0:
raise ValueError("primary_gamma must be a positive energy (keV).")
if not (0 <= b <= 1):
raise ValueError("branching_ratio_pg must be a ratio (0 <= b <= 1)")
self.name = name
self.E = E
self.b = b

126
src/pg_rad/landscape.py Normal file
View File

@ -0,0 +1,126 @@
from matplotlib import pyplot as plt
from matplotlib.patches import Circle
import numpy as np
from pg_rad.path import Path
from pg_rad.sources import PointSource
class Landscape:
"""A generic Landscape that can contain a Path and sources.
Args:
air_density (float, optional): Air density in kg / m^3. Defaults to 1.243.
size (int | tuple[int, int, int], optional): Size of the world. Defaults to 500.
scale (str, optional): The scale of the size argument passed. Defaults to 'meters'.
"""
def __init__(
self,
air_density: float = 1.243,
size: int | tuple[int, int, int] = 500,
scale = 'meters',
):
if isinstance(size, int):
self.world = np.zeros((size, size, size))
elif isinstance(size, tuple) and len(size) == 3:
self.world = np.zeros(size)
else:
raise TypeError("size must be an integer or a tuple of 3 integers.")
self.air_density = air_density
self.scale = scale
self.path: Path = None
self.sources: list[PointSource] = []
def plot(self, z = 0):
"""Plot a slice of the world at a height `z`.
Args:
z (int, optional): Height of slice. Defaults to 0.
Returns:
fig, ax: Matplotlib figure objects.
"""
x_lim, y_lim, _ = self.world.shape
fig, ax = plt.subplots()
ax.set_xlim(right=x_lim)
ax.set_ylim(top=y_lim)
ax.set_xlabel(f"X [{self.scale}]")
ax.set_ylabel(f"Y [{self.scale}]")
if not self.path == None:
ax.plot(self.path.x_list, self.path.y_list, 'bo-')
for s in self.sources:
if np.isclose(s.z, z):
dot = Circle(
(s.x, s.y),
radius=5,
color=s.color,
zorder=5
)
ax.text(
s.x + 0.06,
s.y + 0.06,
s.name,
color=s.color,
fontsize=10,
ha="left",
va="bottom",
zorder=6
)
ax.add_patch(dot)
return fig, ax
def add_sources(self, *sources: PointSource):
"""Add one or more point sources to the world.
Args:
*sources (pg_rad.sources.PointSource): One or more sources, passed as
Source1, Source2, ...
Raises:
ValueError: If the source is outside the boundaries of the landscape.
"""
max_x, max_y, max_z = self.world.shape[:3]
if any(
not (0 <= source.x < max_x and
0 <= source.y < max_y and
0 <= source.z < max_z)
for source in sources
):
raise ValueError("One or more sources are outside the landscape!")
self.sources.extend(sources)
def set_path(self, path: Path):
"""
Set the path in the landscape.
"""
self.path = path
def create_landscape_from_path(path: Path, max_z = 500):
"""Generate a landscape from a path, using its dimensions to determine
the size of the landscape.
Args:
path (Path): A Path object describing the trajectory.
max_z (int, optional): Height of the world. Defaults to 500 meters.
Returns:
landscape (pg_rad.landscape.Landscape): A landscape with dimensions based on the provided Path.
"""
max_x = np.ceil(max(path.x_list))
max_y = np.ceil(max(path.y_list))
landscape = Landscape(
size = (max_x, max_y, max_z)
)
landscape.path = path
return landscape

17
src/pg_rad/logger.py Normal file
View File

@ -0,0 +1,17 @@
import logging
import logging.config
import pathlib
import yaml
def setup_logger(name):
logger = logging.getLogger(name)
base_dir = pathlib.Path(__file__).resolve().parent
config_file = base_dir / "configs" / "logging.yml"
with open(config_file) as f:
config = yaml.safe_load(f)
logging.config.dictConfig(config)
return logger

33
src/pg_rad/objects.py Normal file
View File

@ -0,0 +1,33 @@
import math
from typing import Self
class Object:
def __init__(
self,
x: float,
y: float,
z: float,
name: str = "Unnamed object",
color: str = 'grey'):
"""
A generic object.
Args:
x (float): X coordinate.
y (float): Y coordinate.
z (float): Z coordinate.
name (str, optional): Name for the object. Defaults to "Unnamed object".
color (str, optional): Matplotlib compatible color string. Defaults to "red".
"""
self.x = x
self.y = y
self.z = z
self.name = name
self.color = color
def distance_to(self, other: Self) -> float:
return math.dist(
(self.x, self.y, self.z),
(other.x, other.y, other.z),
)

187
src/pg_rad/path.py Normal file
View File

@ -0,0 +1,187 @@
from collections.abc import Sequence
import math
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
import piecewise_regression
from pg_rad.exceptions import ConvergenceError
from pg_rad.logger import setup_logger
logger = setup_logger(__name__)
class PathSegment:
def __init__(self, a: tuple[float, float], b: tuple[float, float]):
"""A straight Segment of a Path, from (x_a, y_a) to (x_b, y_b).
Args:
a (tuple[float, float]): The starting point (x_a, y_a).
b (tuple[float, float]): The final point (x_b, y_b).
"""
self.a = a
self.b = b
def get_length(self) -> float:
return math.dist(self.a, self.b)
length = property(get_length)
def __str__(self) -> str:
return str(f"({self.a}, {self.b})")
def __getitem__(self, index) -> float:
if index == 0:
return self.a
elif index == 1:
return self.b
else:
raise IndexError
class Path:
def __init__(
self,
coord_list: Sequence[tuple[float, float]],
z: float = 0,
path_simplify = False
):
"""Construct a path of sequences based on a list of coordinates.
Args:
coord_list (Sequence[tuple[float, float]]): List of x,y coordinates.
z (float, optional): Height of the path. Defaults to 0.
path_simplify (bool, optional): Whether to pg_rad.path.simplify_path(). Defaults to False.
"""
if len(coord_list) < 2:
raise ValueError("Must provide at least two coordinates as a list of tuples, e.g. [(x1, y1), (x2, y2)]")
x, y = tuple(zip(*coord_list))
if path_simplify:
try:
x, y = simplify_path(list(x), list(y))
except ConvergenceError:
logger.warning("Continuing without simplifying path.")
self.x_list = list(x)
self.y_list = list(y)
coord_list = list(zip(x, y))
self.segments = [PathSegment(i, ip1) for i, ip1 in zip(coord_list, coord_list[1:])]
self.z = z
def get_length(self) -> float:
return sum([s.length for s in self.segments])
length = property(get_length)
def __getitem__(self, index) -> PathSegment:
return self.segments[index]
def __str__(self) -> str:
return str([str(s) for s in self.segments])
def plot(self, **kwargs):
"""
Plot the path using matplotlib.
"""
plt.plot(self.x_list, self.y_list, **kwargs)
def simplify_path(
x: Sequence[float],
y: Sequence[float],
keep_endpoints_equal: bool = False,
n_breakpoints: int = 3
):
"""From full resolution x and y arrays, return a piecewise linearly approximated/simplified pair of x and y arrays.
This function uses the `piecewise_regression` package. From a full set of
coordinate pairs, the function fits linear sections, automatically finding
the number of breakpoints and their positions.
On why the default value of n_breakpoints is 3, from the `piecewise_regression`
docs:
"If you do not have (or do not want to use) initial guesses for the number
of breakpoints, you can set it to n_breakpoints=3, and the algorithm will
randomly generate start_values. With a 50% chance, the bootstrap restarting
algorithm will either use the best currently converged breakpoints or
randomly generate new start_values, escaping the local optima in two ways in
order to find better global optima."
Args:
x (Sequence[float]): Full list of x coordinates.
y (Sequence[float]): Full list of y coordinates.
keep_endpoints_equal (bool, optional): Whether or not to force start
and end to be exactly equal to the original. This will worsen the linear
approximation at the beginning and end of path. Defaults to False.
n_breakpoints (int, optional): Number of breakpoints. Defaults to 3.
Returns:
x (list[float]): Reduced list of x coordinates.
y (list[float]): Reduced list of y coordinates.
Raises:
ConvergenceError: If the fitting algorithm failed to simplify the path.
Reference:
Pilgrim, C., (2021). piecewise-regression (aka segmented regression) in Python. Journal of Open Source Software, 6(68), 3859, https://doi.org/10.21105/joss.03859.
"""
logger.debug(f"Attempting piecewise regression on path.")
pw_fit = piecewise_regression.Fit(x, y, n_breakpoints=n_breakpoints)
pw_res = pw_fit.get_results()
if pw_res == None:
logger.error("Piecewise regression failed to converge.")
raise ConvergenceError("Piecewise regression failed to converge.")
est = pw_res['estimates']
# extract and sort breakpoints
breakpoints_x = sorted(
v['estimate'] for k, v in est.items() if k.startswith('breakpoint')
)
x_points = [x[0]] + breakpoints_x + [x[-1]]
y_points = pw_fit.predict(x_points)
if keep_endpoints_equal:
logger.debug("Forcing endpoint equality.")
y_points[0] = y[0]
y_points[-1] = y[-1]
logger.info(
f"Piecewise regression reduced path from {len(x)-1} to {len(x_points)-1} segments."
)
return x_points, y_points
def path_from_RT90(
df: pd.DataFrame,
east_col: str = "East",
north_col: str = "North",
**kwargs
) -> Path:
"""Construct a path from East and North formatted coordinates (RT90) in a Pandas DataFrame.
Args:
df (pandas.DataFrame): DataFrame containing at least the two columns noted in the cols argument.
east_col (str): The column name for the East coordinates.
north_col (str): The column name for the North coordinates.
Returns:
Path: A Path object built from the aquisition coordinates in the DataFrame.
"""
east_arr = np.array(df[east_col]) - min(df[east_col])
north_arr = np.array(df[north_col]) - min(df[north_col])
coord_pairs = list(zip(east_arr, north_arr))
path = Path(coord_pairs, **kwargs)
return path

43
src/pg_rad/sources.py Normal file
View File

@ -0,0 +1,43 @@
from pg_rad.objects import Object
from pg_rad.isotope import Isotope
class PointSource(Object):
_id_counter = 1
def __init__(
self,
x: float,
y: float,
z: float,
activity: int,
isotope: Isotope,
name: str | None = None,
color: str = "red"):
"""A point source.
Args:
x (float): X coordinate.
y (float): Y coordinate.
z (float): Z coordinate.
activity (int): Activity A in MBq.
isotope (Isotope): The isotope.
name (str | None, optional): Can give the source a unique name.
Defaults to None, making the name sequential.
(Source-1, Source-2, etc.).
color (str, optional): Matplotlib compatible color string. Defaults to "red".
"""
self.id = PointSource._id_counter
PointSource._id_counter += 1
# default name derived from ID if not provided
if name is None:
name = f"Source {self.id}"
super().__init__(x, y, z, name, color)
self.activity = activity
self.isotope = isotope
self.color = color
def __repr__(self):
return f"PointSource(name={self.name}, pos={(self.x, self.y, self.z)}, isotope={self.isotope.name}, A={self.activity} MBq)"

107
tests/data/coordinates.csv Normal file
View File

@ -0,0 +1,107 @@
,East,North
0,1324671.2,6187244.9
1,1324671.8,6187239.9
2,1324672.7,6187235.0
3,1324673.5,6187230.1
4,1324675.1,6187225.4
5,1324677.4,6187220.9
6,1324679.2,6187216.3
7,1324681.5,6187211.8
8,1324683.9,6187207.4
9,1324686.5,6187203.2
10,1324689.0,6187198.9
11,1324692.3,6187195.1
12,1324695.6,6187191.5
13,1324698.1,6187187.1
14,1324701.9,6187184.1
15,1324704.2,6187179.6
16,1324707.7,6187176.0
17,1324710.2,6187171.7
18,1324712.8,6187167.4
19,1324715.1,6187163.0
20,1324718.3,6187159.2
21,1324721.3,6187155.3
22,1324725.0,6187151.9
23,1324728.0,6187147.9
24,1324732.0,6187145.0
25,1324736.5,6187142.8
26,1324741.0,6187140.7
27,1324745.9,6187140.1
28,1324750.6,6187138.6
29,1324755.2,6187136.8
30,1324760.1,6187136.4
31,1324765.1,6187136.1
32,1324770.1,6187135.9
33,1324774.8,6187134.2
34,1324779.8,6187133.7
35,1324784.8,6187133.5
36,1324789.8,6187133.3
37,1324794.5,6187132.1
38,1324799.3,6187131.1
39,1324804.0,6187129.8
40,1324808.0,6187126.7
41,1324811.7,6187123.3
42,1324815.2,6187119.8
43,1324819.1,6187116.6
44,1324822.3,6187112.9
45,1324825.5,6187109.0
46,1324828.6,6187105.1
47,1324832.3,6187101.8
48,1324836.6,6187099.3
49,1324840.3,6187095.9
50,1324843.9,6187092.4
51,1324847.2,6187088.7
52,1324851.6,6187086.5
53,1324856.3,6187084.6
54,1324860.1,6187081.4
55,1324864.8,6187079.7
56,1324868.9,6187076.9
57,1324872.9,6187073.9
58,1324876.6,6187070.4
59,1324880.4,6187067.3
60,1324884.3,6187064.1
61,1324887.6,6187060.4
62,1324891.1,6187056.8
63,1324894.8,6187053.5
64,1324898.1,6187049.8
65,1324901.7,6187046.3
66,1324905.5,6187043.1
67,1324909.3,6187039.9
68,1324913.0,6187036.4
69,1324916.4,6187032.8
70,1324919.6,6187029.0
71,1324923.3,6187025.6
72,1324926.3,6187021.6
73,1324929.4,6187017.7
74,1324933.0,6187014.2
75,1324936.6,6187010.8
76,1324939.8,6187007.0
77,1324942.7,6187002.9
78,1324945.9,6186999.1
79,1324948.4,6186994.8
80,1324951.9,6186991.2
81,1324954.9,6186987.2
82,1324957.4,6186982.8
83,1324960.4,6186978.9
84,1324962.7,6186974.4
85,1324965.8,6186970.5
86,1324968.2,6186966.1
87,1324971.1,6186962.0
88,1324973.7,6186957.8
89,1324976.4,6186953.6
90,1324978.8,6186949.2
91,1324981.8,6186945.2
92,1324984.3,6186940.9
93,1324987.0,6186936.8
94,1324989.3,6186932.3
95,1324992.1,6186928.1
96,1324994.2,6186923.6
97,1324996.7,6186919.3
98,1324998.5,6186914.8
99,1325001.4,6186910.7
100,1325003.7,6186906.2
101,1325006.8,6186902.3
102,1325009.9,6186898.4
103,1325012.9,6186894.4
104,1325015.3,6186890.0
105,1325018.9,6186886.5
1 East North
2 0 1324671.2 6187244.9
3 1 1324671.8 6187239.9
4 2 1324672.7 6187235.0
5 3 1324673.5 6187230.1
6 4 1324675.1 6187225.4
7 5 1324677.4 6187220.9
8 6 1324679.2 6187216.3
9 7 1324681.5 6187211.8
10 8 1324683.9 6187207.4
11 9 1324686.5 6187203.2
12 10 1324689.0 6187198.9
13 11 1324692.3 6187195.1
14 12 1324695.6 6187191.5
15 13 1324698.1 6187187.1
16 14 1324701.9 6187184.1
17 15 1324704.2 6187179.6
18 16 1324707.7 6187176.0
19 17 1324710.2 6187171.7
20 18 1324712.8 6187167.4
21 19 1324715.1 6187163.0
22 20 1324718.3 6187159.2
23 21 1324721.3 6187155.3
24 22 1324725.0 6187151.9
25 23 1324728.0 6187147.9
26 24 1324732.0 6187145.0
27 25 1324736.5 6187142.8
28 26 1324741.0 6187140.7
29 27 1324745.9 6187140.1
30 28 1324750.6 6187138.6
31 29 1324755.2 6187136.8
32 30 1324760.1 6187136.4
33 31 1324765.1 6187136.1
34 32 1324770.1 6187135.9
35 33 1324774.8 6187134.2
36 34 1324779.8 6187133.7
37 35 1324784.8 6187133.5
38 36 1324789.8 6187133.3
39 37 1324794.5 6187132.1
40 38 1324799.3 6187131.1
41 39 1324804.0 6187129.8
42 40 1324808.0 6187126.7
43 41 1324811.7 6187123.3
44 42 1324815.2 6187119.8
45 43 1324819.1 6187116.6
46 44 1324822.3 6187112.9
47 45 1324825.5 6187109.0
48 46 1324828.6 6187105.1
49 47 1324832.3 6187101.8
50 48 1324836.6 6187099.3
51 49 1324840.3 6187095.9
52 50 1324843.9 6187092.4
53 51 1324847.2 6187088.7
54 52 1324851.6 6187086.5
55 53 1324856.3 6187084.6
56 54 1324860.1 6187081.4
57 55 1324864.8 6187079.7
58 56 1324868.9 6187076.9
59 57 1324872.9 6187073.9
60 58 1324876.6 6187070.4
61 59 1324880.4 6187067.3
62 60 1324884.3 6187064.1
63 61 1324887.6 6187060.4
64 62 1324891.1 6187056.8
65 63 1324894.8 6187053.5
66 64 1324898.1 6187049.8
67 65 1324901.7 6187046.3
68 66 1324905.5 6187043.1
69 67 1324909.3 6187039.9
70 68 1324913.0 6187036.4
71 69 1324916.4 6187032.8
72 70 1324919.6 6187029.0
73 71 1324923.3 6187025.6
74 72 1324926.3 6187021.6
75 73 1324929.4 6187017.7
76 74 1324933.0 6187014.2
77 75 1324936.6 6187010.8
78 76 1324939.8 6187007.0
79 77 1324942.7 6187002.9
80 78 1324945.9 6186999.1
81 79 1324948.4 6186994.8
82 80 1324951.9 6186991.2
83 81 1324954.9 6186987.2
84 82 1324957.4 6186982.8
85 83 1324960.4 6186978.9
86 84 1324962.7 6186974.4
87 85 1324965.8 6186970.5
88 86 1324968.2 6186966.1
89 87 1324971.1 6186962.0
90 88 1324973.7 6186957.8
91 89 1324976.4 6186953.6
92 90 1324978.8 6186949.2
93 91 1324981.8 6186945.2
94 92 1324984.3 6186940.9
95 93 1324987.0 6186936.8
96 94 1324989.3 6186932.3
97 95 1324992.1 6186928.1
98 96 1324994.2 6186923.6
99 97 1324996.7 6186919.3
100 98 1324998.5 6186914.8
101 99 1325001.4 6186910.7
102 100 1325003.7 6186906.2
103 101 1325006.8 6186902.3
104 102 1325009.9 6186898.4
105 103 1325012.9 6186894.4
106 104 1325015.3 6186890.0
107 105 1325018.9 6186886.5

36
tests/test_objects.py Normal file
View File

@ -0,0 +1,36 @@
import numpy as np
import pytest
from pg_rad.objects import Source
@pytest.fixture
def test_sources():
pos_a = np.random.rand(3)
pos_b = np.random.rand(3)
a = Source(*tuple(pos_a), strength = None)
b = Source(*tuple(pos_b), strength = None)
return pos_a, pos_b, a, b
def test_if_distances_equal(test_sources):
"""_Verify whether from object A to object B is the same as B to A._"""
_, _, a, b = test_sources
assert a.distance_to(b) == b.distance_to(a)
def test_distance_calculation(test_sources):
"""_Verify whether distance between two static objects (e.g. sources)
is calculated correctly._"""
pos_a, pos_b, a, b = test_sources
dx = pos_b[0] - pos_a[0]
dy = pos_b[1] - pos_a[1]
dz = pos_b[2] - pos_a[2]
assert np.isclose(
a.distance_to(b),
np.sqrt(dx**2 + dy**2 + dz**2),
rtol = 1e-12)

View File

@ -0,0 +1,47 @@
import pathlib
import numpy as np
import pytest
from pg_rad.dataloader import load_data
from pg_rad.path import Path, path_from_RT90
@pytest.fixture
def test_df():
csv_path = pathlib.Path(__file__).parent / "data/coordinates.csv"
return load_data(csv_path)
def test_piecewise_regression(test_df):
"""_Verify whether the intermediate points deviate less than 0.1 SD._"""
p_full = path_from_RT90(
test_df,
east_col="East",
north_col="North",
simplify_path=False
)
p_simpl = path_from_RT90(
test_df,
east_col="East",
north_col="North",
simplify_path=True
)
x_f = np.array(p_full.x_list)
y_f = np.array(p_full.y_list)
x_s = np.array(p_simpl.x_list)
y_s = np.array(p_simpl.y_list)
sd = np.std(y_f)
for xb, yb in zip(x_s[1:-1], y_s[1:-1]):
# find nearest original x index
idx = np.argmin(np.abs(x_f - xb))
deviation = abs(yb - y_f[idx])
assert deviation < 0.1 * sd, (
f"Breakpoint deviation too large: {deviation:.4f} "
f"(threshold {0.1 * sd:.4f}) at x={xb:.2f}"
)