mirror of
https://github.com/pim-n/pg-rad
synced 2026-02-02 14:33:09 +01:00
Add path generation functionality.
This commit is contained in:
0
src/pg_rad/__init__.py
Normal file
0
src/pg_rad/__init__.py
Normal file
15
src/pg_rad/configs/logging.yml
Normal file
15
src/pg_rad/configs/logging.yml
Normal file
@ -0,0 +1,15 @@
|
||||
version: 1
|
||||
disable_existing_loggers: false
|
||||
formatters:
|
||||
simple:
|
||||
format: '%(asctime)s - %(levelname)s: %(message)s'
|
||||
handlers:
|
||||
stdout:
|
||||
class: logging.StreamHandler
|
||||
formatter: simple
|
||||
stream: ext://sys.stdout
|
||||
loggers:
|
||||
root:
|
||||
level: INFO
|
||||
handlers:
|
||||
- stdout
|
||||
26
src/pg_rad/dataloader.py
Normal file
26
src/pg_rad/dataloader.py
Normal file
@ -0,0 +1,26 @@
|
||||
import pandas as pd
|
||||
|
||||
from pg_rad.logger import setup_logger
|
||||
from pg_rad.exceptions import DataLoadError, InvalidCSVError
|
||||
|
||||
logger = setup_logger(__name__)
|
||||
|
||||
def load_data(filename: str) -> pd.DataFrame:
|
||||
logger.debug(f"Attempting to load data from {filename}")
|
||||
|
||||
try:
|
||||
df = pd.read_csv(filename, delimiter=',')
|
||||
|
||||
except FileNotFoundError as e:
|
||||
logger.error(f"File not found: {filename}")
|
||||
raise DataLoadError(f"File does not exist: {filename}") from e
|
||||
|
||||
except pd.errors.ParserError as e:
|
||||
logger.error(f"Invalid CSV format: {filename}")
|
||||
raise InvalidCSVError(f"Invalid CSV file: {filename}") from e
|
||||
|
||||
except Exception as e:
|
||||
logger.exception(f"Unexpected error while loading {filename}")
|
||||
raise DataLoadError("Unexpected error while loading data") from e
|
||||
|
||||
return df
|
||||
8
src/pg_rad/exceptions.py
Normal file
8
src/pg_rad/exceptions.py
Normal file
@ -0,0 +1,8 @@
|
||||
class ConvergenceError(Exception):
|
||||
"""Raised when an algorithm fails to converge."""
|
||||
|
||||
class DataLoadError(Exception):
|
||||
"""Base class for data loading errors."""
|
||||
|
||||
class InvalidCSVError(DataLoadError):
|
||||
"""Raised when a file is not a valid CSV."""
|
||||
17
src/pg_rad/logger.py
Normal file
17
src/pg_rad/logger.py
Normal file
@ -0,0 +1,17 @@
|
||||
import logging
|
||||
import logging.config
|
||||
import pathlib
|
||||
|
||||
import yaml
|
||||
|
||||
def setup_logger(name):
|
||||
logger = logging.getLogger(name)
|
||||
|
||||
base_dir = pathlib.Path(__file__).resolve().parent
|
||||
config_file = base_dir / "configs" / "logging.yml"
|
||||
|
||||
with open(config_file) as f:
|
||||
config = yaml.safe_load(f)
|
||||
|
||||
logging.config.dictConfig(config)
|
||||
return logger
|
||||
187
src/pg_rad/path.py
Normal file
187
src/pg_rad/path.py
Normal file
@ -0,0 +1,187 @@
|
||||
from collections.abc import Sequence
|
||||
import math
|
||||
|
||||
from matplotlib import pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import piecewise_regression
|
||||
|
||||
from pg_rad.exceptions import ConvergenceError
|
||||
from pg_rad.logger import setup_logger
|
||||
|
||||
logger = setup_logger(__name__)
|
||||
|
||||
class PathSegment:
|
||||
def __init__(self, a: tuple[float, float], b: tuple[float, float]):
|
||||
"""_A straight Segment of a Path, from (x_a, y_a) to (x_b, y_b)._
|
||||
|
||||
Args:
|
||||
a (tuple[float, float]): _The starting point (x_a, y_a)._
|
||||
b (tuple[float, float]): _The final point (x_b, y_b)._
|
||||
"""
|
||||
self.a = a
|
||||
self.b = b
|
||||
|
||||
def get_length(self) -> float:
|
||||
return math.dist(self.a, self.b)
|
||||
|
||||
length = property(get_length)
|
||||
|
||||
def __str__(self) -> str:
|
||||
return str(f"({self.a}, {self.b})")
|
||||
|
||||
def __getitem__(self, index) -> float:
|
||||
if index == 0:
|
||||
return self.a
|
||||
elif index == 1:
|
||||
return self.b
|
||||
else:
|
||||
raise IndexError
|
||||
|
||||
class Path:
|
||||
def __init__(
|
||||
self,
|
||||
coord_list: Sequence[tuple[float, float]],
|
||||
z: float = 0,
|
||||
simplify_path = False
|
||||
):
|
||||
"""Construct a path of sequences based on a list of coordinates.
|
||||
|
||||
Args:
|
||||
coord_list (Sequence[tuple[float, float]]): _description_
|
||||
z (float, optional): _description_. Defaults to 0.
|
||||
|
||||
Raises:
|
||||
ValueError: _description_
|
||||
"""
|
||||
|
||||
if len(coord_list) < 2:
|
||||
raise ValueError("Must provide at least two coordinates as a list of tuples, e.g. [(x1, y1), (x2, y2)]")
|
||||
|
||||
x, y = tuple(zip(*coord_list))
|
||||
|
||||
if simplify_path:
|
||||
try:
|
||||
x, y = piecewise_regression_on_path(list(x), list(y))
|
||||
except ConvergenceError:
|
||||
logger.warning("Continuing without simplifying path.")
|
||||
|
||||
self.x_list = list(x)
|
||||
self.y_list = list(y)
|
||||
|
||||
coord_list = list(zip(x, y))
|
||||
|
||||
self.segments = [PathSegment(i, ip1) for i, ip1 in zip(coord_list, coord_list[1:])]
|
||||
|
||||
self.z = z
|
||||
|
||||
def get_length(self) -> float:
|
||||
return sum([s.length for s in self.segments])
|
||||
|
||||
length = property(get_length)
|
||||
|
||||
def __getitem__(self, index) -> PathSegment:
|
||||
return self.segments[index]
|
||||
|
||||
def __str__(self) -> str:
|
||||
return str([str(s) for s in self.segments])
|
||||
|
||||
def plot(self, **kwargs):
|
||||
"""
|
||||
Plot the path using matplotlib.
|
||||
"""
|
||||
plt.plot(self.x_list, self.y_list, **kwargs)
|
||||
|
||||
def piecewise_regression_on_path(
|
||||
x: Sequence[float],
|
||||
y: Sequence[float],
|
||||
keep_endpoints_equal: bool = False,
|
||||
n_breakpoints: int = 3
|
||||
):
|
||||
"""_Take a Path object and return a piece-wise linear approximated Path._
|
||||
|
||||
This function uses the `piecewise_regression` package. From a full set of
|
||||
coordinate pairs, the function fits linear sections, automatically finding
|
||||
the number of breakpoints and their positions.
|
||||
|
||||
On why the default value of n_breakpoints is 3, from the `piecewise_regression`
|
||||
docs:
|
||||
"If you do not have (or do not want to use) initial guesses for the number
|
||||
of breakpoints, you can set it to n_breakpoints=3, and the algorithm will
|
||||
randomly generate start_values. With a 50% chance, the bootstrap restarting
|
||||
algorithm will either use the best currently converged breakpoints or
|
||||
randomly generate new start_values, escaping the local optima in two ways in
|
||||
order to find better global optima."
|
||||
|
||||
Args:
|
||||
x (Sequence[float]): _Full list of x coordinates._
|
||||
y (Sequence[float]): _Full list of y coordinates._
|
||||
keep_endpoints_equal (bool, optional): _Whether or not to force start
|
||||
and end to be exactly equal to the original. This will worsen the linear
|
||||
approximation at the beginning and end of path. Defaults to False._
|
||||
n_breakpoints (int, optional): _Number of breakpoints. Defaults to 3._
|
||||
|
||||
Returns:
|
||||
x (Sequence[float]): _Reduced list of x coordinates._
|
||||
y (Sequence[float]): _Reduced list of y coordinates._
|
||||
|
||||
Reference:
|
||||
Pilgrim, C., (2021). piecewise-regression (aka segmented regression) in Python. Journal of Open Source Software, 6(68), 3859, https://doi.org/10.21105/joss.03859.
|
||||
"""
|
||||
|
||||
logger.debug(f"Attempting piecewise regression on path.")
|
||||
|
||||
pw_fit = piecewise_regression.Fit(x, y, n_breakpoints=n_breakpoints)
|
||||
pw_res = pw_fit.get_results()
|
||||
|
||||
if pw_res == None:
|
||||
logger.error("Piecewise regression failed to converge.")
|
||||
raise ConvergenceError("Piecewise regression failed to converge.")
|
||||
|
||||
est = pw_res['estimates']
|
||||
|
||||
# extract and sort breakpoints
|
||||
breakpoints_x = sorted(
|
||||
v['estimate'] for k, v in est.items() if k.startswith('breakpoint')
|
||||
)
|
||||
|
||||
x_points = [x[0]] + breakpoints_x + [x[-1]]
|
||||
|
||||
y_points = pw_fit.predict(x_points)
|
||||
|
||||
if keep_endpoints_equal:
|
||||
logger.debug("Forcing endpoint equality.")
|
||||
y_points[0] = y[0]
|
||||
y_points[-1] = y[-1]
|
||||
|
||||
logger.info(
|
||||
f"Piecewise regression reduced path from {len(x)-1} to {len(x_points)-1} segments."
|
||||
)
|
||||
|
||||
return x_points, y_points
|
||||
|
||||
def path_from_RT90(
|
||||
df: pd.DataFrame,
|
||||
east_col: str = "East",
|
||||
north_col: str = "North",
|
||||
**kwargs
|
||||
) -> Path:
|
||||
|
||||
"""_Construct a path from East and North formatted coordinates (RT90) in a Pandas DataFrame._
|
||||
|
||||
Args:
|
||||
df (pd.DataFrame): _DataFrame containing at least the two columns noted in the cols argument._
|
||||
east_col (str): _The column name for the East coordinates._
|
||||
north_col (str): _The column name for the North coordinates._
|
||||
|
||||
Returns:
|
||||
Path: _A Path object built from the aquisition coordinates in the DataFrame._
|
||||
"""
|
||||
|
||||
east_arr = np.array(df[east_col]) - min(df[east_col])
|
||||
north_arr = np.array(df[north_col]) - min(df[north_col])
|
||||
|
||||
coord_pairs = list(zip(east_arr, north_arr))
|
||||
|
||||
path = Path(coord_pairs, **kwargs)
|
||||
return path
|
||||
Reference in New Issue
Block a user