
Entropic spring
Rediscover Hooke’s law with Monte Carlo
This repository contains all the code for the final project in the course Applied
Computational Physics and Machine Learning. This project explores the statis-
tical simulation of a simple rubber band as a chain of links. It was intended for
exploring Monte Carlo simulations and particularly re-weighting techniques.

Installation
First, clone the repository

>> git clone git@gitlab.com:pimnelissen/entropic-spring.git
>> cd entropic-spring

Then, if needed, you can install the requirements, for example in a virtual
environment

>> python3 -m venv .venv
>> source .venv/bin/activate
(venv) >> pip install -r requirements.txt

Usage
Link.py and RubberBand.py are the data structures and should not be directly
used. Instead, each part of the project has its own script I.py, II.py, III.py,
which can be run as follows

(venv) >> python3 {task}.py

There is a boolean USE_SAVED=True which will reuse data arrays that are in-
cluded in this repository. If you wish to re-run the Monte Carlo sampling, set
USE_SAVED=False. II.py does NOT generate samples directly in any case. It
will use the saved data from I.py. To use new data in II.py, run I.py first.

Theory
In statistical terms we can think of the rubber band as a series of fixed-length
segments, which have a positive or negative direction. Then, a rubber band of
N segments or ‘links’ has n+ positive and n− negative links. The total length L
is then

L = a(2n+ − N)

With no force applied corresponds to a random assignment which means that
E[L] = 0.

There are many microstates which correspond to one macrostate of L, namely
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Ω(N, n+) =
(

N

n+

)
= N !

n+!(N − n+)!

with this, we have that the true distribution of lengths will be

P (L) = Ω(N, n)/2N

Results
Here follows a brief display of the results. Interpretation is in each figure caption.

Rubber band with no force

As a sanity test, the first task consisted of simply generating a rubber band with
no force applied. In Figure 1 is a

Figure 1: Histogram of sampled lengths for M = 106 samples of a rubber band
consisting of N = 100 length a = 1 links. P (L) = Ω(N, n)/2N represents the
true distribution of lengths for a given N and n = (N + L/a)/2. P̂ (L) represents
the normalised histogram for lengths L of the sampled rubber bands. The χ2

test was done for all bins with more than 5 counts, and shows good agreement
between theory and sample.
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Figure 2: P (L)/P̂ (L) for various lengths L/a. As expected, the ratio is close
to 1 around L = 0 where we have sufficient statistics. This latter statement is
not true at the tails, where we see the sample probability start to diverge from
the true probability.

Rubber band with force (weighting)
Suppose we want to apply a force f . Obviously one way to get a updated P̂ (L)
is to resample with some force applied. But this is inefficient, if we already have
some previous sample. One way to avoid having to resample is weighting the
original unbiased distribution by applying a Boltzmann weight to each microstate

ω = exp (βfL), β = 1/kBT.

The new true distribution then becomes

Pf (L) = Ω(N, n)eβfL

Z(f) , Z(f) =
∑

L

Ω(N, n)eβfL
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Figure 3: Histograms for the weighted distributions with kBT = a = 1. In
green is the original, unbiased distribution P̂ (L). Red and blue show the sampled
and true distributions with applied weights, according to the description above
this figure. What we see is that weighting only works with good statistics. When
the force f causes P̂ (L) to shift too much beyond the original distribution, the
lack of statistics (available samples to weight) causes incorrect results. The
figure also shows µeff , the effective percentage of samples used in the weighted
distribution, for each force applied.
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Figure 4: Ratio plots for the weighted distributions. We see that the sampled
distribution after weighting becomes unrepresentative of the true underlying
distribution for higher forces f .
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Figure 5: A plot of force against µeff . Clearly one can see that effective sample
size decreases exponentially with increasing f , so the weighting technique, while
very efficient, only work with sufficient overlap between the source and target
distributions, in this case, small f .

Resampling and approximating expected length as function
of force
When weighting breaks down we must resample. How can one implement this?
One way is to bias the sampling. Instead of p+ = p− = 0.5, we let p+ depend
on the force f . This is given by

p+(f) = w+

w+ + w−
= eβfa

eβfa + e−βfa
= 1

2(1 + tanh(βfa))

and then of course p−(f) = 1 − p+(f). One can see here that when f = 0
the above reduces to the simple p+ = p− = 0.5. Now, we then have that the
expected length for some applied force is

⟨L⟩(f) = Na tanh(βfa).

If βfa ≪ 1, the small force approximation

⟨L⟩(f) ≈ Nfa2

kBT
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may be used. In this final simulation, we seek to find out how the mean lengths
L from biased sampling according to the force-dependent p+(f) align with the
theoretical expected value and the small force approximation.
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Figure
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6: ⟨L⟩(f) for various forces f . We have M = 103 samples for each f , with
kBT = a = 1 and N = 100, which gives a keff of 100. The analytical formulas
are in red and are described above this figure. We can see excellent agreement
with the analytical ⟨L⟩(f) across a large range of f . However, the small force
approximation in the lower figure starts to diverge at f > 0.3. A linear fit to
⟨L̂⟩(f < 0.3) gives us an estimated keff ≈ 96.93.

Figure 7: To clarify Figure 6, the absolute difference between the sampled
⟨L̂⟩(f) and ⟨L⟩(f) as well as ⟨L⟩(f) with the small force approximation. We
can very clearly see that the small force approximation breaks down around an f
of 0.3 − 0.4.
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